electronic

  • I am the proud owner of a Futaba Force field 9 (aka FF9) working in PCM mode 41.080Mhz. I came across some links saying that before 2011, I will be forced to throw it away or try to convert it in 35MHz (costs of conversion would out pass a new transmitter). In fact 41MHZ has been assigned to military in France, and is already forbidden in Switzerland... While Googling about more info on that subject, I found a lot of people presenting what must be the future of RC transmitter.

    Spektrum DX7 2.4GHz from www.spektrumrc.com

    In one sentence:
    2.4GHz, frequencies collision detection, 4.2Billions keys, 79 persons flying at the same time, bi-directional protocol, no more RF interferences (because only acting at 35Mhz)!
    The dream of all helicopter pilot. Currently only Spektrumis proposing a transmitter: the DX7

    The transmitter is also cheap: $300, compare to the Futaba 14Mz (2700 euro!!!)

    Their FAQ (frequently asked Questions) will better explain You the inside of that new technology.
    I will personally fly this year one more time on 41MHz (in France) except if there is already too much crash in my club due to interferences and wait for the DX9 (if a DX9 ever come out)
  • An original way to mount the sensorbysgunn911 
    correct cooling fan
    global view
    sensor mounted
    result


    "Finding out that the GV-1 Brackets were not meant to be used with a Caliber 30's clutch hub being directly in the way, I decided to get creative.

    This worked out perfect, and is probably better that the normal installation method. I used a cooling fan from Correct, (item 416-141) and used the rim around the top to install the magnet. I then mounted the sensor on the TOP of the fan facing down and drilled a hole and shaped it to fit the sensor.

    The sensor now sits above the fan facing down, and is receiving at a 97% (which is very good). It also is mounted to the frame instead of a long bracket, and doesn't move around. This method also makes for a much cleaner look, as there is no brackets used to mount.
    "

    All credits to sgunn911, his gallery at runryder and website CUSTOM-RC.COM
      "Installing the GV-1 sensor on the Caliber 30 can be tricky because the fan, where the magnets are mounted, is above the clutch. I've seen many modified brackets on the web to 'bend' the sensor around the clutch. However, I found that..."
    more on his site
    http://www.cjwoods.com/Caliber_30_tips.htm
  • the future is now here!

    Reality

    I do not own currently a FMA copilot, but I plan to acquire one as soon as a CCPM version will be available. I want to use it only in some case: panic or brain short circuit. Many people complains about this new gadget, arguing that it is better to learn alone, yes this is true. On the other side, investing $100 is not an issue if you avoid 1 or 2 crashs.

    Fma Co Pilot Reviews
    www.fmadirect.com Review 1

    Â

    Â

    Experimental projects
    http://gewurtz.mit.edu/research/heli.htm
    http://autopilot.sourceforge.net/ahrs.html
    http://pdv.cs.tu-berlin.de/MARVIN/Â
    http://www.yamaha-motor.co.jp/buzz/others/flying/index.html
    http://sun-valley.stanford.edu/projects/helicopters/helicopters.html/

  •  Overall view of my 1st caliber

    24.08.2002 Add a dual battery system for more safety. I have no heli with only one battery. Here is why:

    Problems 1 battery pack 2 packs +
    mechanic
    Switches
    2 packs +
    Electronic
    switch
    Additional cost of system reference + 55€ + 180€
    Open circuit between battery and switch's pack Failure Redundant Redundant
    Open circuit in one of the pack Failure Redundant Redundant
    Battery short circuit in one pack Failure Failure Redundant
    One pack not fully charged Failure Redundant Redundant
    Switch failure (assumes between RX and backup sys) Failure Redundant Failure
    Battery connector from backup system to the receiver Failure Redundant Failure

    Build yourself a dual switch

  • CSM 540

    • Cable for PC + Software cost 30€ to build only 5€

    Softwar Here

    Documentation (winword manual)

    • How to build your own realistic controler (for Realflight®,or any other simulator that use a regular joystick). All you need is to kill an old radio, extract PCB, and solder some cable.

    All credits to : http://www.iquebec.com/st-prime/modif_rc.html where the following picture was extracted.

    radio_ordi.jpg

    radio_ordi.jpg

    • Connect CSM 10 to a futaba FF9 :You must own the dongle, we only want to bypass the use of the jack connector and use a DIN..or connect to the proprietary connector..
      There is no standard off the shelf plug for this socket but you can use two 2mm pitch 3 pin headers or cut a training cord. Looking into the socket you need to link the bottom row middle and right pins. The top left pin connects to the tip of the 3.5mm jack and the top middle connects to the body of the 3.5mm jack. Plug is drawn when looking at the back of the plug where the wires are

    • Connect CSM 10 to a futaba FF8 or to any game or serial adapter
      FF8- 6 pin DIN plug (60 degree pins) pins 4 and 5 linked in plug, pin 2 to 3.5mm mono jack tip and metal outer of DIN plug to body of 3.5mm jack.

  • FUTABA

    • Training cord cost 160 FF build 28 FF
    FUTAM.GIF
    AM version
    FUTFM.GIF
    FM version
    • CAMPAC memory extension and backup to PC with excel tablecost 75€to build only 6€

    (EEPROM 2.5€) Plan + software (http://members.telocity.com/fritzthecat/campac.html )
    Work only for the FF8, not for the WC or FF9 !

  • /images/futaba14MZ.jpg

    • Double the resolution of PCM 1024,
    • The HVGA screen features crystal-clear 640x240 pixel resolution,
    • 2 internal processors for maximum efficiency and reliability.
    • Windows CE (quite dangerous :-) ).
    • www.14mz.com
    • FlyRC
    • My review:
      • Too expensive: for $2000 you can have a Futaba 9z (top of the line) + a very good ladtop
      • Nobody will be looking at the colour screen while flying: too dangerous for the aircraft
      • Telemetry feature are missing (altitude or better main rotor rpm for helicopter)

  • H1, H2, H3, H4?
    Le H1, c'est quand le plateau cyclique est commandé par : un servo pour le rouli, un servo pour le tangage, et un servo pour le pas collectif.
    Le H2, c'est quand le plateau cyclique est commandé par: 2 servos pour le rouli ( un en push et un en pull ), un servo pour le tangage, et ces trois servos montent et descendent en même temps pour le collectif.
    Le H3, c'est quand les trois servos disposés à 120 ° sur le plateau cyclique. Un mixage de l'émetteur permet de faire du tangage et du rouli. Le collectif est fait par ces 3 servos qui montent et qui descendent en même temps.
    Le H4 , c'est quand les 4 servos sont disposés à 90° l'un par rapport à l'autre. Pour le tangage il y en a 2 qui font push pull , et pour le rouli, les 2 autres font push pull. Le collectif est assuré par les 4 servos qui montent et qui descendent en même temps.
  • Voici Le robot ESSAIM ainsi que nos deux petits modules destructeurs OBee-1 et OBee-2

    Notre Carte Mère : 1 Arcom Pc-104 avec carte Multi Io32 (32 E/S numériques) et une carte Vidéo (3 cartes en tout. C'est un 486SL 25 MHz AMD avec 2 Mo de flash (programme) et un Rom Bios. Carte prêtée par le laboratoire LSI (Logiciels des Systèmes Industriels de l'ESSAIM). Cette Année, on a acheté un beau boitier Alu qui n'existait pas l'année dernière.

    Le programme en turbo pascal est ICI. Il se compile sur le robot et se déclenche dans l'autoexec.bat au boot du PC.

    Vu de Face (cliquer pour élargir):

    C'est par ici, que les balles de tennis sont aspirées et rejetées violemment. Le rouleau est un tube de mousse de peinture. Le carénage est en tôle d'alu peint en jaune.

    Vue arrière (cliquer pour élargir):

    Ici les deux robots OBI1 et OBI2 ne sont pas en position encore. On aperçoit de part et d'autres les deux moteurs à courant continu fixés par des bagues en aluminium fabriqué par les agents techniques de l'ESSAIM (merci encore !).

    Vue arrière (cliquer pour élargir):

    Les deux robots OBI1 et OBI2 sont posés. En fait deux servomoteurs du commerce enroulent autour de leurs flasques une ficelle qui permet de descendre sur commande les deux robots.

    Zoomons un peu sur la face avant du robot :

    Voici une vue plus précise du système d'aspiration de balle de tennis ainsi que du système de projection. Les vues sont assez explicites et se passent presque de commentaires.

     

    LA PROPULSION :

    Cliquer ICI pour voir le PCB qui gère les deux moteurs principaux.

    La carte de commande des moteurs. Commande en tout ou rien par relais.

    Moteur Conrad 12 Volts Réducteur + moyeu alu usiné par nos soins. Roue en Néoprène coupé Ã la bonne épaisseur.

    Vu de dessus sur le même moteur mais coté gauche. La symétrie est parfaite et on peut mieux voir la fixation avec les 2 vis alènes. A coté on remarque le minuscule moteur du rouleau avec sa logique de commande (tout ou rien, en fait juste une réduction de la tension)..

    Pas de roues a l'arrière mais des boules... ne laisse aucune trace sur la piste. Nota : les PMI possèdent des patins en téflon pour des raisons évidentes de places.

     

    LE SYSTEME DE TIR :

    Balle en bas. La balle est à l'horizontal dans le berceau.

    Idem mais vue de dessus. Noter les deux liaisons pivot glissant sur lequel coulisse verticalement le panier basculant.

    On tend la ficelle, le berceau monte avec la balle. On prend l'exemple d'une balle en attente. Noter la superbe astuce dans la case suivante.

    Une guillotine ! Elle empêche le passage de la seconde balle tant que le berceau est en l'air (liaison avec une vulgaire ficelle).

    On note le rail horizontal vers le système de tir et le guide pour la guillotine au premier plan. La carte à coté, c'est le système de détection des lignes (IR en tout ou rien).

    On est presque arrivé en haut. Le berceau peut coulisser autour d'un axe horizontal et si vous regarder bien le berceau est volontairement trop long (butée contre le bâti en jaune).

    On continue donc à tirer dessus, un fin de course allume maintenant le moteur de tir avec une petite avance (c'est le rôle de la tige à droite en violet, que de réaliser cette temporisation).

    La gravité va faire le reste, la balle roule vers le système de tir.....

    La balle est légèrement comprimée. En fait la roue de modélisme est creuse et souple, avec la vitesse de rotation élevée du moteur, elle se déforme et ses crampons empêche qu'une balle ne parte pas. Malheureusement, l'excentricité forme un balourd, qui fait vibrer tout le robot, et fait même un peu peur. Mais quelle Patate ! mieux que JPP

    Attention, ne restez pas devant ! ça va faire BOUM

    Vu de dessus de l'imposant moteur de tir, 9A en transitoire et une fixation qui ne favorise pas le refroidissement (voir photo), un fin de course de 3.6 A maximum ! (grille même pas rapidement)

    Vu de coté du même dispositif...

    Pendant ce temps... la deuxième balle est toujours coincé en bas par la guillotine (un bout de métal fixé avec une ficelle autour de la poulie constituée par le bâti).

    L'ascenseur revient vide...

    Et c'est reparti pour un tour si l'on peut dire.

    Voici la première ébauche de notre système de tir, au cas ou ce ne serait pas encore clair. Ebauche du système de tir.

    L'ELECTRONIQUE :

    Vu de dessus du bric à brac.

    L'asservissement de suivi de ligne nécessite d'étalonner les leds IR avec des potentiomètres. Voici une aide au réglage pour chacun des 8 capteurs.

    LES CAPTEURS :

     

     

     

    Cliquer ICI pour voir le PCB qui gère 8 capteurs IR en tout ou rien.

     

    LES MODULES :

    Il s'agit de petits modules à base de 80C535 programmés en assembleur qui possèdent chacun 2 servomoteurs auquel on a enlevé les fins de courses.

    Cliquer ICI et LA pour avoir les plans exacts des bâtis de ces modules.

     


  •  
    with a Raptor 30 canopy, things are really easy...note the
    additionnal battery pack mounted in front of the radio tray.
    with default canopyyou must move the CSM box
    the closest as possible to the servo tray



  •   Replacing the sensor with an optical one
    http://www.helidriver.com/OpticalSensor.html
      all credits to Helidriver



  • An example? edisoncarter from GTA Forums has wired the PS2 controller up to the PC's parallel port and has tried numerous combinations at high speed (this technique is known as BRUTE-FORCE: trying all possible combinaisons till expecting a result) just to find cheat code for the PS2 game GTA. When I told You that a lot more people are now smarter...

    Crazy? no! A problem has always a solution :-)


  • Reverse engineering of the IPOD firmware by using a modem noise attack!

     I got an iPod for christmas. Theipodlinux project was one of the main reasons for my choice and so I started exploring the iPod as far as I was able to. I patched the bootloader and got some basic code to run but there was no way to access any hardware other than the two CPUs yet. To get the LCD, Clickwheel and the harddisk working we needed to reverse engineer the bootloader in the flashrom. But to do that we first had to find a way to get that code. Seems quite impossible without any knowlegde about the IO-Hardware but I found a solution...

    They have in fact use the internal tweeter of the IPOD to dump the result of code execution of the firmware into sound. These people have write a digital sound compression algorithm, an encoder and a decoder!!! Now 64kb of internal code can be examined!! why? just for booting LInux!!! penguin power!!!  read more here...



  • Just got my order of three Raspberry Pi 2!. Compared to the Raspberry Pi 1 it has:

    • A 900MHz quad-core ARM Cortex-A7 CPU
    • 1GB RAM

    Like the (Pi 1) Model B+, it also has:

    • 4 USB ports
    • 40 GPIO pins
    • Full HDMI port
    • Ethernet port
    • Combined 3.5mm audio jack and composite video
    • Camera interface (CSI)
    • Display interface (DSI)
    • Micro SD card slot
    • VideoCore IV 3D graphics core

    Because it has an ARMv7 processor, it can run the full range of ARM GNU/Linux distributions, including Snappy Ubuntu Core, as well as Microsoft Windows 10! The Raspberry Pi 2 has an identical form factor to the previous (Pi 1) Model B+ and has complete compatibility with Raspberry Pi 1.

  • The term super servo is used to describe servos capable of running at high data frame rates (6ms per frame or less). Examples of this type of servo are the JR2700G and Futaba-S9250. The use of super servos is highly recommended as they allow the gyro to fully exploit its fast response.
    WARNING:Use of the super servo facility with servos not designed to accept the high frame rate will result in damage to the servo.
    Below is a non exhaustive list of super servos:
    JR -(2700G, 4000, 2000, 7000, 7100, 8700G, 8417(Digital), 8231(Digital), 8411(Digital).
    Futaba -(9250, 9450(Digital)).
  • by Steve SimpsonThis email address is being protected from spambots. You need JavaScript enabled to view it.

    > Hello, I understand the failsafe issues with the Governor so that you do not blow the engine. But how much of a risk is there to actually have your engine blow up on you.
    In model helicopters, there will always be some load from the fan and factory heli's tend to have somewhat conservative gearing so with a stock motor running low or no nitro as is common in Europe, it would take a pretty unusual set of circumstances to actually 'blow up' and engine.
    In the US is common to have .30 size helis converted to .46 and running high nitro and tunes pipes. In this case your margin of safety gets pretty slim . . .
    . and it doesn't take a lot of coaxing for certain brands to spit rods . . particularly if the carb cannot maintain a rich mixture when the RPM's suddenly go through the roof. Engine damage from over revving is cumulative though. Like smoking cigarettes. You don't have to 'blow up' an engine all at once . . . it can be done over time . . . As with bending a paper clip back and forth . . . you get away with it the first few times.
    There has been a lot of chatter recently about engine damage, but the greater danger is in overspeeding the head itself. Aerodynamics will limit how fast the rotor will turn without engine power because drag increases exponentially as the airflow accelerates the blade, so there is a natural 'air brake' of sorts.
    However, when the rotor is spinning up via aerodynamic power, the engine is free to really give it shove into the 'red' zone. Spitting a rotor blade is a much more serious event than spitting a connecting rod.

    > What other benefits do you reap from installing one into your heli?
    One of the vexing things about model heli's up until recently was attempting to provide for some type of 'synthetic' governing of engine speed. Early on it was with interconnected linkages and later with our friend the 'throttle' curve . .. . no matter how many points there are on a throttle curve, it is still a
    static curve and cannot adapt to the various conflicting conditions found different flight maneuvers. Therefore, throttle 'mixes' are used to attempt to
    give the basic curve some ability to adapt to situations that require more or less power than the basic static curve provides.
    Even with all these tools available, often a mix 'robs Peter to pay Paul' and fixing one situation worsens another. The more power your heli has available and the more . . . 'enthusiastic' your flying style, the worse this situation becomes. While there is always a guru who claims to be able to get 'perfect' engine speed control, the fact is that some situations that cause over revving cannot be resolved by curves and mixes. Since these setting are all static, the only solution is to have multiple flight modes where a different set of settings can be stored. Then you simply switch to that mode when you anticipate the
    situation.
    Are we having fun yet?
    A governor eliminates the need to worry about any of the stuff in this post . .

  • Be careful ! in France you are not allowed to transmit in realtime video from an aircraft !

    You need :

    • Velleman 2.4 GHz wireless surveillance system 1700 Fr

    include a high res color video camera, ability to have 4 different TX, built in microphone, and 300 feet range.

    boite 64 Ko

    • Accus (2 * 9V) 296 Fr
    • 1 voltage regulator : 7812 (12V)+ micro switch 7 Fr
    Rx
     
    rx_front.jpg
    rx_front.jpg
    rx_rear.jpg
    rx_rear.jpg

    Tx

    I remove some part to have less parts....
    tx_front.jpg
    tx_front.jpg
    tx_right.jpg
    tx_right.jpg

    Add a 2.5 jack to plug the battery on a charger.

    Add another switch to cut power

    The Tx now contains 2 9V battery (serial = 18V reduce with a 7812 to 12V)

    • A small TV (LCD) ex 11cm TFT 1000 Fr

    Some Pictures :

    SOON

    Conclusions :

    this is the best system, but the price is expensive. size could be reduce, weight is 215 grams (accu + camera).

  • Be careful ! in France you are not allowed to transmit in realtime video from an aircraft !

    You need:

    • Aurel H2-TV Channel Audio-Video Modulator
      Mod. MAV-VHF224
      225 Fr

      Description :
      Low cost CATV circuit for high quality audio-video signals, operating in the VHF Band. Input signals can be fed from videocameras, tuners, video tape players, etc, directly using the lines of the standardized output connectors (i.e. SCART), while output R.F. can be received with any standard not modified TV receiver. The Modulator is very stable in frequency and features high harmonic rejection.
    Characteristics Min Typ Max Unit
    VS Supply Voltage 4.75 5 5.25 Vdc
    IS Supply Current   90   mA
    PO RF Output power   1   mW
    IM 3rd Order Intermodulation     60 dBm
    FC Carrier Frequency 223.75 224.5 225.25 MHz
    IM Video Input Modulation   1.2   Vpp
    FSC Sub-Carrier Frequency   5.5   MHz
    MA Audio FM Modulation   1   Vpp
    II Input Impedance   100   KW
    TPE Pre-enphasis   50   S
    TOP Operating temperature range -20   +80 °C
    Pin-Out
    1 Ground
    2 Audio Input
    3 Ground
    4 Video Input
    5 Ground
    6 +5V
    7 Ground
    8 RF Output
    • Aurel H2 Channel CATV Amplifier
      Mod. M.C.A. 224
      130 Fr

      Description :
      Linear CATV circuit for high quality audio-video signal amplification, operating on the VHF H2 Channel. RF input signal can be derived from a Audio Video Modulator (best operation is with our mod. MAV-VHF 224). Output can be received with any standard not modified TV receiver.
    Characteristics Min Typ Max Unit
    VS Supply Voltage 11.4 12 12.6 Vdc
    IS Supply Current   100   mA
    FW Working Frequency   224   MHz
    PO RF Output power (2 mW IN)   +19   dBm
    DI Intermodulation distorsion   50 60 dB
    TOP Operating temperature range -20   +80 °C
    Pin-Out
    1 +12v
    2 Enable
    3 Ground
    6 RF Input
    7 Ground
    10 Ground
    13 Ground
    15 RF Output
    • Mini color video cam 890 Fr
    Characteristics
    Video system PAL
    Effective pixel 628*582
    Synchro internal
    Resolution (TV lines) 380
    S/N Ration > 42 dB
    Mill Illumination 3 lux at F1.2
    Electronic shutter 1/50 - 1/150 000
    Video output 1V , 75 Ohms
    Lens 3.6 mm - 5 mm (F 2 -> 4.5)
    Lens Angle 92° -> 65°
    Power current 50 mA
    Power Source DC12V
    Pin-Out
    Red +12v
    Yellow signal
    Black Ground
    • a good and safety box (in case of crash) 18 Fr
    • Accus (2 * 9V), a free rx channel. 296 Fr
    • 2 voltage regulator : 7812 (12V) and 7805 (5V) + 2 * 100 nF 27 Fr
    • A small TV (LCD) ex 11cm TFT 1000 Fr

    Conclusions :

    The result is very bad with no specific antenna, maybe I should replace my 32 cm wire with something better. Distance are bad too and some polarized effect appear when you turned the device : Really BAD !

    Â